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To confne our attention to terrestrial matters 
would be to limit the human spirit.

–Stephen Hawking

Our knowledge about the universe is expanding at a 
phenomenal rate. New discoveries are being made 

in many astronomical realms: astronomers are prob-
ing the extent of water on the Moon, developing new 
theories of how the solar system formed, fnding plan-
ets orbiting numerous stars, and discovering stars and 
stellar remnants with unexpected properties, among 
myriad other things.

Many of these scientifc updates are included in this 
edition. I am also pleased to include a wide variety of 
modern learning techniques and new features in the 
tenth edition of Discovering the Universe while still pro-
viding the wide range of factual topics that are a hall-
mark of this text.

In the realm of astronomy education, educators con-
tinue to develop methods to help students understand 
how to think like scientists and grasp the core concepts, 
even when scientifc theories are at odds with students’ 
prior beliefs and misconceptions. In-class interactivities, 
such as students responding to questions with “click-
ers,” enrich the classroom experience. Online materials 
provide tutorials and practice questions that turn stu-
dents from passive into active learners.

The tenth edition of Discovering the Universe con-
tinues to present concepts clearly and accurately to 
students, while strengthening the pedagogical tools to 
make the learning process even more worthwhile. The 
pedagogy includes:

• presenting the observations and underlying physical 
concepts needed to connect astronomical observations to 
theories that explain them coherently and meaningfully;

• using both textual and graphical information to pres-
ent concepts for students who learn in different ways;

• addressing student misconceptions in a respectful but 
rigorous manner, helping readers to understand why 
modern scientifc views are correct;

• using analogies from everyday life to make cosmic 
phenomena more concrete;

• providing visually rich timelines that connect astro-
nomical discoveries with other events throughout history;

• providing the dates of the lives of all the people intro-
duced in the text to help students relate discoveries to 
the historical times in which they occurred;

• expanding student perspectives and confronting mis-
conceptions by exploring plausible alternative situations 
(asking “What if…?” questions);

• pointing students toward cutting-edge research in 
“Frontiers yet to be discovered” sections;

• linking material presented in the book with enhanced 
material offered electronically.

MaNy FeatUreS BrING the 
UNIVerSe INtO CLearer FOCUS
What If…? margin questions about important concepts 
stretch students’ thinking using hypothetical situations. 
These questions help to correct misconceptions by 
 explaining to students what strange effects and conse-
quences would result if their initial misconceptions were 
true.

New theory of planet formation Chapter 5 now presents 
the Nice (pronounced niece) theory of solar system for-
mation, walking students through a fully up-to-date pic-
ture of how the interactions between the Sun and plan-
ets evolved.  Its effects are discussed in Chapters 6–9.

Margin questions about important concepts are pre-
sented in most sections of the book. 
These questions encourage students 
to frequently test themselves and 
correct their beliefs before errors ac-
cumulate. For example, after learn-
ing about inertia, students are asked 
how, while driving in a car, they can 
show that their bodies have inertia. 
(They could put on the brakes and feel themselves being 
restrained by the seatbelts.) Answers to approximately 
one-third of the margin questions appear at the end of 
this text. 

PreFaCe
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Guided Discovery: Tides focuses on how the Moon cre-
ates the tides on Earth. After explaining ocean tides here 
on Earth, we will explore how Earth once created tides 
on the Moon that changed the Moon’s original rotation 
rate to synchronous rotation.
5  Two-thirds of the tide height on Earth today results 
from the gravitational tug-of-war between Earth and the 
Moon as the two bodies orbit their barycenter. The Sun 
generates most of the remaining third of the tides, with 
Jupiter and the other planets contributing a tiny fraction.
6  As explained in Guided Discovery: Tides, two high 
tides always occur on opposite sides of Earth (see Figure 
GD6-1). When the Sun, the Moon, and Earth are aligned, 
the Sun and the Moon create pairs of high ocean tides in 
the same directions, and the resulting combined tides are 
the highest high tides (and lowest low tides) of the lunar 
cycle. These spring tides (so-called not because they 
only occur in the spring—they occur in all seasons—
but because the term derives from the German word 
springen, meaning to “spring up”) occur at every new 
and full Moon (see Figure GD6-2a). Note that it does 
not matter whether the Sun and Moon are on the same 
or opposite sides of Earth when generating the spring 
tides, because the Sun and the Moon both create high 
tides on opposite sides of Earth.

At frst quarter and third quarter, the Sun and the 
Moon form a right angle as seen from Earth. The gravi-
tational forces they exert compete with each other, so 
the tidal distortion is the least pronounced. The especial-
ly small tidal shifts on these days are called neap tides 
(Figure GD6-2b).

Finally, we can explain the Moon’s synchronous ro-
tation. When the Moon was young, it was molten and 
Earth’s gravity created huge tides of molten rock up to 18 
m (60 ft) high there. Friction generated by these tides be-
tween the liquid rock and the mantle rock below it caused 
the Moon to speed up or slow down (we do not know 
which) until one of the high tides became fxed directly 
between the Moon’s center and the center of Earth. As 
the surface solidifed, it locked onto the interior, causing  
the entire Moon to rotate at the same rate as its surface. 
The entire Moon was then in synchronous rotation.

6-9 the Moon is moving away from Earth
In 1897, Sir George Darwin (1845–1912), son of the 
evolutionist Charles Darwin, proposed that the Moon 
is moving away from Earth. To understand why, read 
Guided Discovery: Tides and see Figure GD6-2, which 
shows that the high tide nearest the Moon is actually 10° 
ahead of the Moon in its orbit around Earth. This offset 
occurs because friction between the ocean and the ocean 
foor causes the rapidly spinning Earth to drag the tidal 
bulge ahead of the line between the center of Earth and 
the center of the Moon. The gravitational force from 
the water in the high ocean tide near-
est the Moon acts back on the Moon, 
pulling it ahead in its orbit, giving it 
energy and thereby forcing it to spi-
ral outward. This effect is similar to 
what would happen if you tied a ball 
on a string, let it hang down, and then 
started spinning yourself around. Your hand would act 
through the string, giving the ball energy and starting it 
to spin and move farther and farther away from your 
body. Contrary to intuition, however, giving the Moon 
energy to spiral outward does not mean that it is con-
tinually moving faster. In fact, the farther it moves away 
from Earth, the slower it orbits the barycenter.

To test the concept that the Moon is moving away 
from Earth, Apollo 11, 14, and 15 astronauts placed 
sets of refectors on the Moon (see Figure 6-26), similar 
to the orange and red ones found on cars. These refec-
tors are specially designed so that light striking them 
from any direction is refected back toward its source. 
Pulses of laser light were fred at the Moon from Earth 
(Figure 6-32), and the time it took the light to reach 

Margin Question 6-8 
Why haven’t the ocean tides 
on Earth put our planet into 
synchronous rotation with 
respect to the Moon?

WHAT IF...

The Moon Was Not in Synchronous Rotation with 
Earth?
We would, of course, be able to see all parts of the Moon’s 
surface. More interestingly, the Moon’s rotation would 
cause land tides to travel along the Moon as it rotated and 
revolved around the barycenter. These tides would cause 
the rock of the Moon to rub against itself, creating heat, 
and causing more of the Moon’s interior to be molten than 
may be the case today. That molten rock would escape 
the Moon’s surface in volcanoes and through cracks in its 
surface, creating a very colorful and dynamic Moon.

FIGURE 6-32  Lunar Ranging Beams of laser light are fred 
through three telescopes at the Observatoire de la Côte d’Azur, 
France. The light is then refected back by the corner refectors 
placed on the Moon by Apollo astronauts. From the time it 
takes the light to reach the Moon and return to Earth, astrono-
mers can determine the distance to the Moon to within a few 
millimeters. (Jean-Louis Hatat/Observatoire de la Côte d’Azur) 
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vernal equinox and is one of the two days on which the 
Sun rises due east and sets due west (Figure 1-17b). The 
vernal equinox is the “prime meridian” of the celestial 
sphere. Three months after the vernal equinox, around 
June 21, the Sun rises farthest north of east and passes 
highest in the sky (Figure 1-17c). This is the summer sol-
stice (see Figure 1-16), the day of the year in the north-
ern hemisphere with the most daylight.

From June 21 through December 21, the Sun rises 
farther south than it did the preceding day. Its highest 
point in the sky is lower each succeeding day—the cycle 
of the previous 6 months reverses. The  autumnal equi-
nox occurs around September 22  (Figure 1-17d), with 
the Sun heading southward across the celestial equator, 
as seen from Earth. 

The Seasons The higher the Sun rises during the day, 
the more daylight hours there are. During the days with 
longer periods of daylight, more light and heat from the 
Sun strike that hemisphere. Furthermore, when the Sun 
is higher in the sky, its energy is more concentrated on 
Earth’s surface (see the footprint that the “cylinder of 
light” from the Sun makes in Figure 1-17a–d). Thus, dur-
ing these days more energy is deposited on each square 
meter of the surface, thereby warming the surface more 
than when the Sun is lower in the sky. The temperature 
and, hence, the seasons are determined by the duration 
of daylight at any place and the height of the Sun in the 
sky there. (Bear in mind that winds and clouds greatly 
affect the weather throughout the year—we ignore these 
effects here.)
3  To summarize, the Sun is lowest in the northern 
sky on the winter solstice. This marks the beginning of 
winter in the northern hemisphere. As the Sun moves 
northward, the amount of daylight and heat deposited 
increases daily. The vernal equinox marks a midpoint 
in the amount of light and heat from the Sun onto the 
northern hemisphere and is the beginning of spring. 
When the Sun reaches the summer solstice, it is high-
est in the northern sky and is above the horizon for the 
most hours of any day of the year. This is the beginning 
of summer. Returning southward, the Sun crosses the 
celestial equator once again on the autumnal equinox, 
the beginning of fall.
4  Earth is closest to the Sun on or around January 3 
of each year—the dead of winter in the  northern hemi-
sphere! While the distance between Earth and the Sun 
changes by 5 million km (3 million mi) throughout the 
year, this 3% variation in distance has only a minor 
effect on the seasons. The variation in Earth’s distance 
from the Sun over the year would have a greater ef-
fect if it were not for the fact that the southern hemi-
sphere has more area covered by oceans than does the 
northern hemisphere. Water absorbs less heat from the 
Sun than does land. As a result, when Earth is closer 
to the Sun during the southern hemisphere’s summer 
(and hence the Sun is high in the southern hemisphere’s 

sky), the southern oceans scatter more light and heat 
directly back into space than occurs when the Sun is 
higher over the land-rich northern hemisphere during 
the other half of the year. Had the extra energy sent 
back into space when we are closer to the Sun been 
absorbed by our planet, Earth would indeed heat more 
during this time than when the Sun is over the northern 
hemisphere.

WHAT IF... 

Earth’s changing distance from the Sun caused  
the seasons (and how do we know it doesn’t)?
Earth’s orbit around the Sun is elliptical (we will discuss 
this oval shape in detail in Chapter 2). If the seasons were 
caused by the changing distance between Earth and the 
Sun, all parts of Earth should have the same seasons at the 
same time. In fact, the northern and southern hemispheres 
have seasons at exactly opposite times, so they must be 
caused by something else. 

The Sun’s Path Across the Sky During the north-
ern hemisphere’s summer months, when the northern 
hemisphere is tilted toward the Sun (see Figure 1-15), 
the Sun rises in the northeast and sets in the northwest. 
The Sun provides more than 12 hours of daylight in the 
northern hemisphere and passes high in the sky. At the 
summer solstice, the Sun is as far north as it gets, giving 
the greatest number of daylight hours to the northern 
hemisphere (Figure 1-17c).

During the northern hemisphere’s winter months, 
when the northern hemisphere is tilted away from the 
Sun, the Sun rises in the southeast. Daylight lasts for 
fewer than 12 hours, as the Sun skims low over the 
southern horizon and sets in the southwest. Night is 
longest in the northern hemisphere when the Sun is at 
the winter solstice (Figure 1-17a).

The Sun’s maximum angle above the southern hori-
zon is different at different latitudes. The farther north 
you are, the lower the Sun is in the sky at any time of 
day than it is on that day at more equatorial locations. 
At latitudes above 66½° north latitude or below 66½° 
south latitude, the Sun does not rise at all during parts 
of their fall and winter months. During their spring 
and summer months, those same regions of Earth have  

Expect the Unexpected The process of science 
 requires that we question the obvious, that is, what 
we think we know. Many phenomena in the universe 
defy commonsense explanations. The fact that the 
changing distance from Earth to the Sun has a mini-
mal effect on the seasons is an excellent example.

Insight Into Science
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Margin photos provide a connection between the con-
cepts being presented and their applications in everyday 
life.

Margin charts show the location in the sky of important 
astronomical objects cited in the text. Suffcient detail in 
the margin charts allows students to locate the objects 
with either the unaided eye or a small telescope, as ap-
propriate. In this example, an image of the Pleiades star 
cluster is shown with a star chart of the constellation 
Aldebaran, in which it lies, among other constellations. 

Dynamic art Summary fgures appear throughout the 
book to show either the interactions between important 
concepts or the evolution of important objects. For ex-
ample, the location of the Sun in the sky, which varies 
over the seasons, as does the corresponding intensity of 
the light and the appropriate ground cover, is shown in a 
sequence of drawings combined into one fgure. 

Revised coverage of planet classifcation The categories 
of planets, dwarf planets, and small solar system objects 
are explained and reconciled with the existing classes 
of objects, including planets, moons, asteroids, meteor-
oids, and comets. Also explained is how Pluto fts more 
comfortably with the dwarf planets than with the eight 
planets.

Deeper focus on fundamental student understanding  
Discovering the Universe is well known for the clarity 
of its exposition, but that doesn’t mean we can’t do bet-
ter.  In this edition, a variety of concepts have been fne-
tuned to help students better understand them.  Some 
of these are misconception-rich subjects, while others 
are topics that require exquisite attention to words with 
multiple meanings.  

PrOVeN FeatUreS SUPPOrt 
LearNING
What Do You Think? and What Did You Think? ques-
tions in each chapter ask students to consider their pres-
ent beliefs and actively compare them with the correct 
science presented in the book. Numbered icons mark the 
places in the text where each concept is discussed. En-
couraging students to think about what they believe is 
true and then work through the correct science step-by-
step has proved to be an effective teaching technique, es-
pecially when time constraints prevent instructors from 
working with students individually or in small groups as 
they try to reconcile incorrect beliefs with proper science. 
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FIGURE 12-4 A Refection Nebula and Dark Nebula (a) This open 
cluster, called the Pleiades, can easily be seen with the naked eye in 
the constellation Taurus (the Bull). Pleiades lies about 440 light-years 
(134 pc) from Earth. The stars are not shedding mass, unlike the stars in 
Figures 12-15a and 12-23. The blue glow surrounding the stars of the 
Pleiades is a refection nebula created as some of the stars’ radiation 
scatters off preexisting dust grains in their vicinity. (b) Each dot plotted on 
this H-R diagram represents a star in the Pleiades whose luminosity and 
surface temperature have been determined. Note that most of the cool, 
low-mass stars have arrived at the main sequence, indicating that hydro-
gen fusion has begun in their cores. The cluster has a diameter of about 
5 light-years, is about 100 million years old, and contains about 500 
stars. (c) The dark nebula Barnard 86 is located in Sagittarius. It is vis-
ible in this photograph simply because it blocks out light from the stars 
beyond it. The bluish stars to the left of the dark nebula are members of a 
star cluster called NGC 6520. (a and c: Anglo-Australian  Observatory/David 
Malin Images)

NGC 6520
(star cluster)

Barnard 86
(dark nebula)

c

a

In mapping the locations of CO emission, astronomers 
came to realize that interstellar gas and dust are often con-
centrated in giant molecular clouds. In some cases, these 
clouds appear as dark nebulae silhouetted against a glow-
ing background light, such as Orion’s famous Horsehead 
Nebula (Figure 12-5). In other cases, the clouds appear as 
dark nebulae that obscure the background stars (Figure 
12-4b). Some 6000 giant molecular clouds are estimated 
to exist in our Milky Way Galaxy, and have masses that 
range from 105 to 2 × 106 M⊙ and diameters that range 

from 15 to 600 light-years. The density inside each of 
these clouds ranges from 102 to 105 hydrogen molecules 
per cubic centimeter—thousands of times greater than the 
average density of the gas and dust dispersed throughout 
interstellar space, but some 1015 times less dense than the 
air we breathe. Having located interstellar matter, we will 
now consider why some of this gas and dust becomes 
Jeans unstable, and therefore collapses to form new stars 
(and planets). We explore this activity by expanding on 
the material in Section 5-2.
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for Figure 1-17 carries the appropriate  adjustments for 
the southern hemisphere. For the  following paragraphs 

in the southern hemisphere, add 6 
months to each date, and change win-
ter to summer, spring to fall, north to 
south.) The day that the Sun rises far-
thest south of east is around  December 
22 each year (Figure 1-17a) and is 

called the winter solstice. The winter solstice is the point 
on the ecliptic farthest south of the celestial equator (see 

Figure 1-16). It is also the day when the Sun rises to the 
lowest height at noon (Figure 1-17a), and it signals the 
day of the year in the northern hemisphere with the few-
est number of daylight hours.

As the Sun moves along the ecliptic after the winter 
solstice, it rises earlier, is more northerly on the eastern 
horizon, and it passes higher in the sky at midday than 
it did on preceding days. Three months later, around 
March 20, the Sun crosses the celestial equator heading 
northward. As noted in Section 1-5, this is called the 
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FIGURE 1-17 The Sun’s Daily Path and the Energy It  Deposits 
Here Northern Hemisphere: (a) On the winter solstice—the 
frst day of winter—the Sun rises farthest south of east, is low-
est in the noontime sky, stays up the shortest time, and its light 
and heat are least intense (most spread out) of any day of the 
year in the northern hemisphere. (b) On the vernal equinox—
the frst day of spring—the Sun rises precisely in the east and 
sets precisely in the west. Its light and heat have been growing 
more intense, as shown by the brighter oval of light than in (a). 
(c) On the summer solstice—the frst day of summer—the Sun 
rises farthest north of east of any day in the year, is highest in 
the noontime sky, stays up the longest time, and its light and 

heat are most intense of any day in the northern hemisphere. 
(d) On the autumnal equinox, the same astronomical condi-
tions exist as on the vernal equinox. Southern Hemisphere: 
If you are reading this in the southern hemisphere, make the 
following changes: (a) Change December 22 to June 21 and 
visualize the Sun’s path starting and ending the same distance 
north of east and north of west as it is south of east and south 
of west as shown here; (b) change March 20 to September 23; 
(c) change June 21 to December 21 and visualize the Sun’s 
path starting and ending the same distance south of east and 
south of west as shown north of east and north of west here; 
(d)  change September 22 to March 20.

Margin Question 1-3
explain why Figure 1-14 must 
have been taken facing west. 
Hint: examine Figure 1-17.
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The Sun: Our Extraordinary 
Ordinary Star

 This ultraviolet image of the Sun, taken in 2010 by the Solar Dynamics 
Observatory, shows a prominence (upper left) in which magnetic felds carry gases above  
the Sun’s surface in a loop that can extend upward hundreds of thousands of kilometers. 
(naSa/GSFC/aia)

Answers to these questions appear in the text beside the corresponding numbers in the 
margins and at the end of the chapter.

1  What percentage of the solar system’s mass 
is in the Sun?

2  Does the Sun have a solid and liquid interior 
like Earth?

3  What is the surface of the Sun like?

4  Does the Sun rotate? If so, how fast?

5  What makes the Sun shine?

6  Are matter and energy conserved?

WHAT DO YOU TH INK?

10
C H A p T E r
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Sun’s atmosphere heats so dramatically in the transition 
zone; why solar luminosity varies with time; just how the 
Sun’s changing output affects the temperatures on Earth; 
the details of how fares and coronal mass ejections oc-
cur; and why the Sun rotates differentially. Furthermore, 
the masses of neutrinos have yet to be determined, as 
does the mechanism that kept the Earth’s oceans liquid 
when the solar system was much younger.

SUMMArY OF KEY IDEAS
The Sun’s Atmosphere
• The thin shell of the Sun’s gases we see are from its 
photosphere, the lowest level of its atmosphere. The 
gases in this layer shine nearly as a blackbody. The pho-
tosphere’s base is at the top of the convective zone.

• Convection of gas from below the photosphere pro-
duces features called granules.

• Above the photosphere is a layer of hotter, but less 
dense, gas called the chromosphere. Jets of gas, called 
spicules, rise up into the chromosphere along the bound-
aries of supergranules.

• The outermost layer of gases in the solar atmosphere, 
called the corona, extends outward to become the solar 
wind at great distances from the Sun. The gases of the co-
rona are very hot, but they have extremely low densities.

The Active Sun
• Some surface features on the Sun vary periodically in 
an 11-year cycle. The magnetic felds that cause these 
changes actually vary over a 22-year cycle.

• Sunspots are relatively cool regions produced by lo-
cal concentrations of the Sun’s magnetic feld  protruding 
through the photosphere. The average number of sun-
spots and their average latitude vary in an 11-year cycle.

• A prominence is gas lifted into the Sun’s corona by 
magnetic felds. A solar fare is a brief, but violent, erup-
tion of hot, ionized gases from a sunspot group. Coro-
nal mass ejections send out large quantities of gas from 
the Sun. Coronal mass ejections and fares that head in 
Earth’s direction affect satellites, communication, and 
electric power, and cause aurorae.

• The magnetic dynamo model suggests that many tran-
sient features of the solar cycle are caused by the effects 
of differential rotation and convection on the Sun’s mag-
netic feld.

The Sun’s Interior
• The Sun’s energy is produced by the thermonuclear 
process called hydrogen fusion, in which four hydrogen 
nuclei release energy when they fuse together to produce 
a single helium nucleus.

• The energy released in a thermonuclear reaction comes 
from the conversion of matter into energy, according to 
Einstein’s equation E = mc2.

WHAT D ID  YOU TH INK?

1  What percentage of the solar system’s mass is in 
the Sun? The Sun contains about 99.85% of the solar 
system’s mass.

2  Does the Sun have a solid and liquid interior like 
Earth? No. The entire Sun is composed of hot gases.

3  What is the surface of the Sun like? The Sun has 
no solid surface. Indeed, it has no solids or liquids 
anywhere. The level we see, the photosphere, is com-
posed of hot, churning gases.

4  Does the Sun rotate? If so, how fast? The Sun’s 
surface rotates differentially, varying between once 
every 35 days near its poles and once every 25 days 
at its equator.

5  What makes the Sun shine? Thermonuclear fusion 
in the Sun’s core is the source of the Sun’s energy.

6  Are matter and energy conserved? By themselves, 
they are not always conserved. Nuclear fusion con-
verts matter into energy. Energy can also be converted 
into matter. The sum of the matter (multiplied by c2) 
and energy is always conserved.

KEY TErMS FOr rEVIEW
Cerenkov radiation, 333
chromosphere, 314
convective zone, 330
core (of the Sun), 326
corona, 315
coronal hole, 324
coronal mass ejection, 

325

differential rotation, 319
flament, 323
granule, 313
helioseismology, 321
hydrogen fusion, 326
hydrostatic  

equilibrium, 329
limb (of the Sun), 313

• The solar model is a theoretical description of the Sun’s 
interior derived from calculations based on the laws of 
physics. The solar model reveals that hydrogen fusion 
occurs in a core that extends from the center to about a 
quarter of the Sun’s visible radius.

• Throughout most of the Sun’s interior, energy moves 
outward from the core by radiative diffusion. In the 
Sun’s outer layers, energy is transported to the Sun’s sur-
face by convection.

• The amount of energy the Sun emits has increased by 
about 30% since it frst formed.

• Neutrinos were originally believed to be massless. The 
electron neutrinos generated and emitted by the Sun 
were originally detected at a lower rate than is predicted 
by our model of thermonuclear fusion. The discrepancy 
occurred because electron neutrinos have mass, which 
causes many of them to change into other forms of neu-
trinos before they reach Earth. These alternative forms 
are now being detected.
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Chapter opening narratives introduce and launch the 
chapter’s topics and provide students with a context for 
understanding the material.

Learning objectives underscore the key chapter concepts.

Section headings are brief sentences that summarize 
section content and serve as a quick study guide to the 
chapter when reread.

Icons link the text to Web material

• Starry Night™ icons link the text to a specifc 
interactivity in the Starry Night™ observing 
programs.

• Video icons link the text to relevant video 
clips available on the textbook’s Web site.

• Animation icons link the text to animated fg-
ures available on the textbook’s Web site.

Guided Discovery boxes offer hands-on experience with 
astronomy. Several use the Starry Night™ software. 

An Astronomer’s Toolbox introduces some of the alge-
braic equations used in astronomy. Most of the material 
in the book is descriptive, so essential equations are set 
off in numbered boxes to maintain the fow of the mate-
rial. The toolboxes also contain worked examples, ad-
ditional explanations, and practice doing calculations; 
answers are given at the end of the book. All the equa-
tions are summarized in Appendix C.
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The lowest mass that an object can have and still main-
tain the fusion of normal hydrogen into helium, as oc-
curs in the Sun (see An Astronomer’s Toolbox 10-1: 
Thermonuclear Fusion), is 0.08 M⊙, or about 75 times 
the mass of Jupiter. Astronomers have discovered hun-
dreds of objects in our Galaxy with less than this mass. 
Like Jupiter, they are primarily composed of hydrogen 
and helium, with traces of other elements. Many of them 
are found in orbit around stars, while some are found 
as free-foating masses that apparently formed without 
ever orbiting a star. An intriguing question has arisen: 
What should these various objects be called?

Although normal hydrogen fusion does not occur 
in them, bodies with between 13 and 75 times Jupiter’s 
mass do fuse deuterium (a rare form of hydrogen) into 
helium and those with between 60 and 75 times Jupiter’s 
mass also fuse lithium (the element with three protons) 
into helium. Both of these types of fusion occur very 
briefy (in cosmic terms) because of the limited supplies 
of deuterium and lithium in any known object in space. 
All objects between 13 and 75 times Jupiter’s mass are 
called brown dwarfs. Objects with less than 13 times Ju-
piter’s mass that are orbiting stars are extrasolar planets 
or exoplanets (see Chapter 5), while free-foating bodies 
with less than 13 times Jupiter’s mass are often called 
sub-brown dwarfs. Bear in mind that these defnitions 
are still undergoing discussion and revision in the as-
tronomy community.

Because they emit relatively little energy compared 
to stars, extrasolar planets and brown dwarfs are dim 
and therefore very challenging to observe. Those in orbit 
are detected by their gravitational or eclipsing effects on 
the stars they orbit. The frst brown dwarf was discov-
ered in 1994. Named Gliese 229B, it is located in orbit 
around a star, Gliese 229A (see Figure 12-12), in the 
constellation Lepus, about 18 ly (6 pc) from Earth. A de-

cade later, an extrasolar planet, 2M1207b, was observed 
orbiting brown dwarf 2M1207 (Figure 5-15). Hundreds 
more brown dwarfs have been found, along with more 
than a dozen sub-brown dwarfs. Many of these are 
found in active star-forming regions, such as the Orion 
Nebula (see Figure 12-17) and the Rho Ophiuchi cloud 
(see the accompanying fgure below). Astronomers have 
also found more than 925 extrasolar planets. In 2002, 
astronomers observed clouds and storms on a brown 
dwarf similar to, but probably much larger than, the 
storms observed on the giant planets in our solar system.

Brown dwarfs of larger mass have the interest-
ing feature that when they fuse deuterium or lithium, 
the helium they create moves upward, out of the core 
where it is formed. This helium is replaced with fresh 
deuterium or lithium fuel to fuse. The upward motion 
of the helium and downward motion of deuterium and 
 lithium-rich hydrogen are due to convection, and, as a 
result of this motion, eventually all the deuterium and 
lithium are consumed. We say that these brown dwarfs 
are fully convective (for further discussion of fully con-
vective stars, see Section 12-8). This convective behavior 
is different than we fnd in the Sun (see Chapter 10), 
which has a separate core, convective zone, and radi-
ative zone that do not share atoms. Flares have been 
observed from brown dwarfs. By analogy to the Sun’s 
fares caused by magnetic felds emerging from its sur-
face, astronomers believe that some brown dwarfs ro-
tate and have magnetic felds.

Based on the numbers and locations of the known 
brown dwarfs and sub-brown dwarfs, astronomers 
estimate that there may be as many of these bodies in 
our Milky Way Galaxy as there are stars. Even in these 
numbers, brown dwarfs do not contribute a substantial 
amount of mass or gravitational force in the Galaxy be-
cause they have such small individual masses.

GuIDED DISCOvERy

Extrasolar Planets and Brown Dwarfs
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A Stellar Nursery Full of Brown 
Dwarfs Besides containing more than 
100 young stars, the Rho Ophiuchi 
cloud, located 540 ly away in the con-
stellation Ophiuchus, contains at least 
30 brown dwarfs. By studying these 
objects, astronomers expect to learn 
more about early stellar evolution. This 
infrared image is color coded, with red 
indicating 7.7-μm radiation and blue 
indicating 14.5-μm radiation. (NASA/
JPL-Caltech/Harvard-Smithsonian CfA)
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to 500 ly (150 pc) away. The success of Hipparcos has 
led to the 2013 launch of Gaia by the European Space 
Agency. This satellite will use stellar parallax measure-
ments to determine the distances to the nearest 1 bil-
lion stars. 

Despite the information gained from stellar parallax, 
astronomers need to know the distances to more remote 
stars for which parallax cannot yet be measured.  Several 
methods of determining ever-greater distances will be 
introduced later in this chapter and in Chapters 12, 13, 
and 17.

Having established that different stars are at  different 
distances from Earth, we now consider the brightness-
es that stars appear to have as seen from our planet. 
 Combining the distances and the varied brightnesses we 
observe will enable us to calculate how much light stars 
actually emit, and thereby to explore their evolution.

MAGNITUDe SCALeS
Greek astronomers, from Hipparchus in the second 
century b.c.e to Ptolemy (90–168 c.e.) in the second 
century c.e., undertook the classifcation of stars strictly 
by evaluating how bright they appear to be relative to 
each other. This comparison made sense because back 
then astronomers assumed the stars were all at the same 
distance from us, and, therefore, differences in bright-
ness due to different stellar distances from Earth were 

not expected. Classifcation regardless of distance is still 
useful to help us navigate around the night sky, and so 
we will study it now. In Section 11-3 we will add the 
effects of different distances on how bright stars appear 
from Earth.

11-2 Apparent magnitude measures the 
brightness of stars as seen from earth
The brightnesses of stars measured without regard 
to their distances from Earth are called apparent 
 magnitudes, denoted by lowercase m. The brightest 
stars were originally said to be of frst magnitude, and 
their apparent magnitudes were designated m = +1. 
Those stars that appeared to be about half as bright as 
frst-magnitude stars were said to be second-magnitude 
stars (designated m = +2), and so forth, down to sixth-
magnitude stars, the dimmest ones visible to the unaided 
eye. (Greek astronomers did not try to classify the Sun’s 
dazzling brightness in this scheme.) Because stars do not 
appear with discrete levels of brightness, this system has 
noninteger magnitudes as well, such as +3.5 or +4.8.

More quantitative methods of classifying stars 
were developed in the mid-nineteenth century (see An 
 Astronomer’s Toolbox 11-2: Details of the Magni-
tude Scales). While maintaining the basic idea that the 
 apparent magnitudes of brighter objects are smaller num-
bers than the apparent magnitudes of dimmer ones, the 

Details of the Magnitude Scales
The magnitude scales were created before accurate 
measurements of the relative brightnesses of stars could 
be made, and they have since been refned.  Specifcally, 
careful measurements reveal that the original frst-
magnitude stars were about 100 times brighter than 
the original sixth-magnitude stars. Therefore, in 1856 
astronomer Sir Norman Pogson (1829–1891) set the 
brightness factor of exactly 100 to defne the range of 
brightness between modern frst- and sixth-magnitude 
stars. In other words, it takes 100 stars of apparent 
magnitude m = +6 to provide as much light as we re-
ceive from a single star of apparent magnitude m = +1.

To fnd out how much brighter each magnitude is 
from the next dimmer one, we note that there are fve 
integer magnitudes between frst and sixth magnitude. 
Going from m = +6 to m = +5 increases (multiplies) 
the brightness we see by the same factor as going from 
m = +5 to m = +4, and so on. Going from m = +6 to 
m = +1 requires multiplying the same brightness factor 
from one magnitude to the next 5 times. The number we 

An AsTronomEr’s Toolbox 11-2

must  multiply 5 times to get the range of brightness of 100 
is 1001/5 ≈ 2.512, or, put another way, 2.512 × 2.512 × 
2.512 × 2.512 × 2.512 ≈ 100. This mathematical state-
ment means that each successively brighter magnitude is 
approximately 2.512 times brighter than the preceding 
magnitude.

Example: An m = +3 star is approximately 2.512 times 
brighter than an m = +4 star. Equivalently, it takes 
2.512 fourth-magnitude stars to provide as much light 
as we receive from a single third-magnitude star.

Try these questions after reading section 11-2: How 
much brighter is an m = 0 star than an m = +4 star? 
How much brighter is an m = –2 star than an m = +5 
star? If one star is 7.93 times brighter than another and the 
brighter star has an absolute magnitude of m = +3, what 
is the absolute magnitude of the dimmer star? (Hint for 
last question: Recall that magnitudes need not be integers.)

(Answers appear at the end of the book.)
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Insight Into Science boxes are brief asides that relate 
topics to the nature of scientifc inquiry and encourage 
critical thinking. 

Wavelength tabs with photographic images show wheth-
er an image was made with radio waves (R), infrared ra-
diation (I), visible light (V), ultraviolet light (U), X-rays 
(X), or gamma rays (G). 

 
Review and practice material

• Summary of Key Ideas is a bulleted list of key con-
cepts.

• What Did You Think? questions at the end of each 
chapter answer the What Do You Think? questions 
posed at the beginning of the chapter.

• Key Words, Review Questions, and Advanced Ques-
tions help students understand the chapter material.

• Discussion Questions offer interesting topics to spark 
lively, insightful debate.

• Web Questions take students to the Web for further 
study.

• NEW: Got It? Questions ask students about either big 
picture concepts related to the chapter or questions as-
sociated with common misconceptions about that mate-
rial (or both!).

• Observing Projects, featuring Starry Night™ activi-
ties, ask students to be astronomers themselves.

What If… Selected chapters conclude with a “What 
If…” essay that encourages critical thinking by speculat-
ing on how changes in the universe could have profound 
effects on Earth.

An Astronomer’s Almanac, a dynamic timeline that re-
lates discoveries in astronomy to other historical events, 
opens each of the four Parts of the text. These almanacs 
provide strong context for the information presented.

MULtIMeDIa
FOr StUDeNtS

Electronic Versions
Discovering the Universe is offered in two electronic 
versions. One is an Interactive e-Book, available as part 
of LaunchPad, described below. The other is a PDF-
based e-Book from CourseSmart, available through 
www.coursesmart.com. These options are provided to 
offer students and instructors fexibility in their use of 
course materials.

CourseSmart e-Book
Discovering the Universe CourseSmart e-Book offers the 
complete text in an easy-to-use, fexible format. Students 
can choose to view the CourseSmart e-Book online or to 
download it to their computer or a mobile device, such 
as iPad, iPhone, or Android device. To help students 
study and mirror the experience of a printed textbook, 
CourseSmart e-Books feature notetaking, highlighting, 
and bookmark features.

ONLINE LEARNING OPTIONS
Discovering the Universe supports instructors with a 
variety of online learning preferences. Its rich array of 
resources and platforms provides solutions according to 
each instructor’s teaching method. Students can also ac-
cess resources through the Companion Web Site.

LaunchPad: Because Technology Should Never  
Get in the Way
At W. H. Freeman, we are committed to providing online 
instructional materials that meet the needs of instructors 
and students in powerful, yet simple ways—powerful 
enough to dramatically enhance teaching and learning, 
yet simple enough to use right away. 
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This interstellar dust almost completely obscures 
from view visible light emanating from the center of our 
Galaxy. Visual photons from there are mostly absorbed 
or scattered before they reach us. Therefore, Herschel 
was seeing only nearby stars, and he measured appar-
ent magnitudes that were dimmer than they would have 
been had there been no interstellar dust. Without ad-
justing for its effects, he concluded that the stars were 
farther away than they really are. He also had no idea 
of the true size of the Galaxy and could not see the vast 
number of stars located in the general direction of the 
galactic center that are hidden by the dust.

Because interstellar dust is concentrated in the plane 
of our Galaxy’s disk, the absorption of starlight is 
strongest in those parts of the sky covered by the Milky 
Way. Above or below the plane of the Galaxy, our view 
is relatively unobscured. Knowledge of our true position 
in the Galaxy eventually came from observations of 
globular clusters (see Section 12-14). Shapley used the 
period–luminosity relation for Cepheid variable stars to 
determine the distances to the then-known 93 globular 
clusters in the sky. (More than 150 are known today.) 
From their directions and distances, he mapped out the 
distribution of these clusters in three-dimensional space. 
By 1917, Shapley had discovered that the globular 
clusters are located in a spherical distribution centered 
not on Earth but on a point in the Milky Way toward 
the constellation Sagittarius. Figure 15-6 shows two 
globular clusters in a relatively clear part of the sky in 
that direction. Shapley then made a bold conjecture: 
The globular clusters orbit the center of the Milky Way, 
which is located in Sagittarius. His pioneering research 
has since been observationally verifed. Earth is not at 
the center of the Galaxy.

15-3 nonvisible observations help map the 
galactic disk
To see into the dust-flled plane of the Milky Way, as-
tronomers use radio wave, infrared, X-ray, and gamma-
ray telescopes (see Figure 3-37). These wavelengths are 
scattered much less by the interstellar gas and dust lo-
cated throughout the Galaxy’s disk than are visible or 
ultraviolet wavelengths. Observations of the distant 

parts of the Galaxy were frst made 
 using radio telescopes. Radio waves 
penetrate Earth’s atmosphere, so we 
can observe them anywhere that we 
can build a radio telescope. (Recall 
that infrared observations must be 
made at high altitudes or in space, 
and that X-ray and gamma-ray observations are almost 
 always made from space.)

Detecting the radio emission directly from interstel-
lar hydrogen—by far the most abundant element in the 
universe—is a primary means of mapping the Galaxy. 
Unfortunately, the major transitions of electrons in the 
hydrogen atom (see Figure 4-11) produce photons at ul-
traviolet and visible wavelengths that do not penetrate 
the interstellar medium. How, then, can radio telescopes 
directly detect all of this hydrogen? The answer lies in 
atomic physics.

In addition to mass and charge, 
particles such as protons and elec-
trons possess a tiny amount of an-
gular momentum, commonly called 
spin. According to the laws of quan-
tum mechanics, the electron and 
proton in a hydrogen atom can spin 
only in either parallel or opposite 

Figure 15-6  A View Toward the Galactic Center More than 
a million stars in the disk of our Galaxy fll this view, which 
covers a relatively clear window just 4° south of the galactic 
nucleus in Sagittarius. Beyond the disk stars you can see two 
prominent globular clusters. Although most regions of the sky 
toward Sagittarius are thick with dust, very little obscuring 
matter appears in this tiny section of the sky. (NOAO/AURA/NSF)

A Little Knowledge Incomplete information often 
leads to incorrect interpretation of data and, there-
fore, to incorrect conclusions. Herschel’s lack of 
knowledge about the matter in interstellar space pre-
vented him from correctly interpreting the distribu-
tion of stars that surround Earth and, thus, led to his 
inaccurate conclusion about the position of the Sun 
within the Galaxy.

Insight Into Science Margin Question 15-2
What situation(s) on Earth are 
analogous to the obscuration 
caused by interstellar gas and 
dust?
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Figure 15-9   A Map of the Galaxy (a) This map, based on 
radio telescope surveys of 21-cm radiation, shows the distribution 
of hydrogen gas in a face-on view of the Galaxy. This view just 
hints at spiral structure. The galactic nucleus is marked with a 
dot surrounded by a circle. Details in the large, blank, wedge-
shaped region toward the upper left of the map are unknown, 
because gas in this part of the sky is moving perpendicular to 
our line of sight and thus does not exhibit a detectable Doppler 
shift. Inset: This drawing, based on visible-light data, shows  
that our solar system lies between the two major arms of the 
Milky Way Galaxy. (b) This drawing labels the spiral arms in 
the Milky Way. (a: Image courtesy: Leo Blitz, Ph.D; inset: NG Maps/
National Geographic Creative; b: NASA/JPL-Caltech/ESO/R. Hurt)

b  Visible-light view of M83

H II regions (red)
in the spiral arms

Hot, luminous young stars (blue) 
in the spiral arms

Figure 15-10   Two Views of a barred Spiral Galaxy The 
galaxy M83 is in the southern constellation of Centaurus, 
about 12 million ly from Earth. (a) A radio view at 21-cm 
wavelength shows the emission from neutral hydrogen gas. 

(b) Note that the spiral arms are more clearly demarcated by 
visible stars and H II regions than by 21-cm radio emission. (a: 
Atlas Image courtesy of 2MASS/UMass/IPAC-Caltech/NASA/NSF; b: 
Robert Gendler and Stephane Guisard)

a  21-cm radio view of M83

Neutral hydrogen (H I) is
concentrated in the spiral arms

arms in Chapter 16, when we present more evidence 
about the cause of spiral structure from observations of 
other galaxies. Recent observations by the Spitzer Space 
Telescope confrm previous observations that a bar 

of stars and gas crosses the center of the Galaxy, also 
shown in Figure 15-9b. The stars, gas, and dust in the 
bar move down one side of it and then reverse direction 
and move back along the other side.
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visible stars and H II regions than by 21-cm radio emission. (a: 
Atlas Image courtesy of 2MASS/UMass/IPAC-Caltech/NASA/NSF; b: 
Robert Gendler and Stephane Guisard)

a  21-cm radio view of M83

Neutral hydrogen (H I) is
concentrated in the spiral arms

arms in Chapter 16, when we present more evidence 
about the cause of spiral structure from observations of 
other galaxies. Recent observations by the Spitzer Space 
Telescope confrm previous observations that a bar 

of stars and gas crosses the center of the Galaxy, also 
shown in Figure 15-9b. The stars, gas, and dust in the 
bar move down one side of it and then reverse direction 
and move back along the other side.
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We have taken what we’ve learned from thousands 
of instructors and hundreds of thousands of students 
to create a new generation of technology: LaunchPad. 
LaunchPad offers our acclaimed content curated and or-
ganized for easy assignment in a breakthrough user in-
terface in which power and simplicity go hand in hand.

Curated LaunchPad units make class prep a whole  
lot easier
Combining a curated collection of video, tutorials, anima-
tions, projects, multimedia activities and exercises, and e-

Book content, LaunchPad’s interactive units give instruc-
tors building blocks to use as is or as a starting point for 
their own learning units. An entire unit’s worth of work 
can be assigned in seconds, drastically saving the amount 
of time it takes to have the course up and running.

LearningCurve

• Powerful adaptive quizzing, a gamelike format,  
direct links to the e-Book, instant feedback, and the 
promise of better grades make using LearningCurve a 
no-brainer. 
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• Customized quizzing tailored to the text adapts to 
 students’ responses and provides material at different 
diffculty levels and topics based on student perfor-
mance. Students love the simple yet powerful system, 
and instructors can access class reports to help refne 
lecture content.

Interactive e-Book
The Interactive e-Book is a complete online version of 
the textbook with easy access to rich multimedia re-
sources. All text, graphics, tables, boxes, and end-of-
chapter resources are included in the e-Book, and the 
e-Book provides instructors and students with powerful 
functionality to tailor their course resources to ft their 
needs.

• Quick, intuitive navigation to any section or subsec-
tion

• Full-text search, including the Glossary and Index

• Sticky-note feature allows users to place notes any-
where on the screen, and choose the note color for easy 
categorization.

• “Top-note” feature allows users to place a prominent 
note at the top of the page to provide a more signifcant 
alert or reminder.

• Text highlighting in a variety of colors

Astronomy Tutorials
These self-guided, concept-driven experiential walk-
throughs engage students in the process of scientifc 
discovery as they make observations, draw conclusions, 
and apply their knowledge. Astronomy tutorials com-
bine multimedia resources, activities, and quizzes.

Image Map Activities
These activities use fgures and photographs from the 
text to assess key ideas, helping students to develop 
their visual literacy. Students must click the appropri-
ate section(s) of the image and answer corresponding 
questions.

Animations, Videos, Interactive Exercises, Flashcards
Other LaunchPad resources highlight key concepts in 
introductory astronomy.

Assignments for Online Quizzing, Homework, and 
Self-Study
Instructors can create and assign automatically graded 
homework and quizzes from the complete test bank, 
which is preloaded in LaunchPad. All quiz results feed 
directly into the instructor’s gradebook.

Scientifc American Newsfeed
To demonstrate the continued process of science and the 
exciting new developments in astronomy, the Scientifc 
American Newsfeed delivers regularly updated material 
from the well-known magazine. Articles, podcasts, news 
briefs, and videos on subjects related to astronomy are 
selected for inclusion by Scientifc American’s editors. 

The Newsfeed provides several updates per week, and 
instructors can archive or assign the content they fnd 
most valuable.

Gradebook
The included gradebook quickly and easily allows in-
structors to look up performance metrics for a whole 
class, for individual students and for individual assign-
ments. Having ready access to this information can help 
both in lecture prep and in making offce hours more 
productive and effcient.

Sapling Learning
www.saplinglearning.com
Developed by educators with both online expertise and 
extensive classroom experience, Sapling Learning pro-
vides highly effective interactive homework and instruc-
tion that improve student learning outcomes for the 
problem-solving disciplines. Sapling Learning offers en-
joyable teaching and effective learning experiences that 
are distinctive in three important ways:

• Ease of use: Sapling Learning’s easy-to-use interface 
keeps students engaged in problem-solving, not strug-
gling with the software.

• Targeted instructional content: Sapling Learning in-
creases student engagement and comprehension by de-
livering immediate feedback and targeted instructional 
content.

• Unsurpassed service and support: Sapling Learning 
makes teaching more enjoyable by providing a dedicated 
Masters and Ph.D. level colleague to service instructors’ 
unique needs throughout the course, including content 
customization.

We offer bundled packages with all versions of our 
texts that include Sapling Learning Online Homework.

STUDENT COMPANION WEB SITE
The Companion Web site at www.whfreeman.com/
dtu10e features a variety of study and review resources 
designed to help students understand the concepts. The 
open-access Web site includes the following:

• Online quizzing offers questions and answers with in-
stant feedback to help students study, review, and pre-
pare for exams. Instructors can access results through 
an online database or they can have results e-mailed 
 directly to their accounts.

• Animations and videos both original and NASA- 
created, are keyed to specifc chapters.

• Flashcards offer help with vocabulary and defnitions.

STArry NighT  TM 

Starry Night™ is a brilliantly realistic planetarium soft-
ware package. It is designed for easy use by anyone with 
an interest in the night sky. See the sky from anywhere 
on Earth or lift off and visit any solar system body or any 
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location up to 20,000 light-years away. View 2,500,000 
stars along with more than 170 deep-space objects such 
as galaxies, star clusters, and nebulae. Travel 15,000 
years in time, check out the view from the International 
Space Station, and see planets up close from any one of 
their moons. Included are stunning OpenGL graphics. 
Handy star charts can be printed to explore outdoors. A 
download code for Starry NightTM is available with the 
text upon request. 

OBSERVING PROjECTS USING STArry NighT  TM

by T. Alan Clark and William J. F. Wilson, University of 
Calgary, and Marcel Bergman
ISBN  1-4641-2502-3
Available for packaging with the text and compatible 
with both PC and Mac, this workbook contains a vari-
ety of comprehensive lab activities for use with Starry 
NightTM. The Observing Projects workbook can also be 
packaged with th Starry NightTM software.

FOr INStrUCtOrS

TEST BANK CD-ROM
Windows and Mac versions on one disc, 
ISBN  1-4641-6878-4
More than 3,500 multiple-choice questions are section-
referenced. The easy-to-use CD-ROM allows instructors 
to add, edit, resequence, and print questions to suit their 
needs.

ONLINE COURSE MATERIALS (BLACKBOARD, 
MOODLE, SAKAI, CANVAS)
As a service for adopters, we will provide content fles 
in the appropriate online course format, including the 
instructor and student resources for the textbook. The 
fles can be used as is or can be customized to ft spe-
cifc needs. Prebuilt quizzes, animations, and activities, 
among other materials, are included.

CLASSROOM PRESENTATION AND  
INTERACTIVITY
A set of online lecture presentations created in Power-
Point allows instructors to tailor their lectures to suit 
their own needs using images and notes from the text-
book. These presentations are available on the instruc-
tor portion of the companion Web site.

CLICKER QUESTIONS
Written by Neil Comins, these questions can be used as 
lecture launchers with or without a classroom response 
system such as iClicker. Each chapter includes questions 
relating to fgures from the text and common miscon-
ceptions, as well as writing questions for instructors 
who would like to add a writing or class discussion ele-
ment to their lectures.
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Understanding 
 Astronomy

PArt I 

 Telescopes enhance our views of the cosmos. (NASA/MSFC/Emmett Given)
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1871-1873 Dimitri Mendeleyev 
develops periodic table of the 
elements. Henry Draper develops 
spectroscopy. James Clerk 
Maxwell asserts that light is an 
electromagnetic phenomenon.

1885-1888 Johann 
Balmer expresses 
spectral lines of 
hydrogen mathematically. 
Heinrich Hertz detects 
radio waves. 

1847 Maria Mitchell 
observed a comet, 
now called “Miss 
Mitchell’s Comet,” 
through a telescope.

1895-1897 Wilhelm 
Roentgen discovers X-rays. 
Joseph Thomson detects 
the electron. Yerkes 40-in. 
optical refracting  
telescope completed. 
(Yerkes Observatory/National 
Geographic Society/Corbis)

1900 Max Planck explains 
blackbody radiation. Paul 
Villard discovers gamma rays.

1942-1949 J. S. Hey 
detects radio waves from 
the Sun. First astronomical 
telescope launched into 
space. Herbert Friedman 
detects X-rays from the Sun. 
200-in. optical reflecting 
telescope begins operation 
on Mt. Palomar, California. 
(Reuters/Corbis)

1990-1996 Hubble Space 
Telescope launched. Keck 10-m 
optical/infrared telescopes begin 
operation at Mauna Kea,  Hawaii. 
SOHO solar observatory 
launched. (Chris Butler/Science 
Source)

1930-1934 Karl 
Jansky builds first 
radio telescope. 
James Chadwick 
discovers the 
neutron. Bernhard 
Schmidt builds his 
Schmidt optical 
reflecting telescope.

1963-1967 Largest 
single-dish radio telescope, 
300 m across, begins 
operation at Arecibo, Puerto 
Rico. First Very Long 
Baseline Interferometer 
(VLBI) images.

2004-present 
Two rovers travel 
on Mars, 
detectors search 
for gravitational 
radiation.

1913 Niels Bohr proposes 
quantum theory of the atom. 
(Roman Sigaev/Shutterstock)

1975 First charge- 
coupled device 
(CCD) astronomical 
observations.

1980 Very Large 
Array (VLA) radio 
observatory 
completed, Socorro, 
New Mexico.

1999 Chandra 
X-ray Telescope 
launched.

2013 Voyager I 
is first spacecraft 
to leave the solar 
system.

1715 Edmond Halley 
calculates shadow path 
of a solar eclipse over 
Earth’s surface. (NASA/
SSPL/Getty Images)

1589-1609 Galileo 
Galilei proposes that all 
objects fall with the same 
acceleration, independent 
of their masses; builds his 
first telescope, a refractor.

2136 B.C.E. Chinese 
astronomers record 
solar eclipse. (Atlas Photo 
Bank/Science Source)

350 B.C.E. Aristotle 
proposes spherical 
Earth, geocentric 
cosmology.

1576-1601
Tycho Brahe makes 
precise observations
of stars and planets.

1609-1610 
Johannes Kepler 
publishes his three 
laws of planetary 
motion.

586 B.C.E.
Thales of Miletus  
predicts solar 
eclipse.

ca. 270 B.C.E. 
Aristarchus of 
Samos proposes 
heliocentric 
cosmology.

1512-1543 Nicolas 
Copernicus proposes 
heliocentric cosmology in 
his Commentariolus and 
De revolutionibus orbium 
coelestium.

1766 Henry 
Cavendish 
discovers 
hydrogen.

1800-1803 William 
Herschel  discovers
infrared radiation from
the Sun. Thomas Young  
demonstrates wave
nature of light. John Dalton 
proposes that matter is 
composed of atoms of 
different masses.

1840-1849 J. W. Draper 
invents  astronomical 
photography; takes first 
photographs of  the Moon. 
Christian Doppler 
proposes that wavelength 
is affected by motion. Lord 
Rosse completes 60-in. 
reflecting telescope at Birr 
Castle in Ireland. Armand  
Fizeau and Jean-Bernard  
Foucault measure speed 
of light accurately. (Larry 
Keller, Lititz Pa./Flickr/Getty)

ca. A.D. 125 Claudius 
Ptolemy refines and details 
geocentric cosmology in his 
Almagest. 1665-1704  Isaac 

Newton deduces 
gravitational force from the 
orbit of the Moon; builds first 
reflecting telescope; proves 
that the planets obey 
Kepler’s laws because they 
move under the influence of 
the gravitational force; and 
publishes compendium on 
light, Opticks. (Science and 
Society/SuperStock)

Background image courtesy of 
Imageman/Shutterstock 
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5

Discovering the Night Sky

 Stars appear to rotate around Polaris, the North Star (top), in this time exposure, 
taken January 26, 2006. Below Polaris is the 4-m telescope dome at Kitt Peak National 
Observatory near Tucson, Arizona. The image is composed of 114 thirty-second exposures of 
the night sky combined to make the equivalent of a nearly 1-hour exposure in which Earth’s 
rotation causes the stars to appear to move across the night sky. The orange glow on the 
horizon is from the city of Phoenix, 160 km (100 mi) away. (STAN HONdA/AFP/Getty Images)

1  Is the North Star—Polaris—the brightest star 
in the night sky?

2  What do astronomers defne as 
constellations?

3  What causes the seasons?

4  When is Earth closest to the Sun?

5  How many zodiac constellations are there?

6  Does the Moon have a dark side that we 
never see from Earth?

7  Is the Moon ever visible during the daytime?

8  What causes lunar and solar eclipses?

Answers to these questions appear in the text beside the corresponding numbers in the 
margins and at the end of the chapter.

WHAt DO YOU tH INK?

C H A P t E r

1
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6  C H A P T E r  1

You are studying astronomy at an exciting time as 
astronomers draw open the curtains of the cos-
mos. Our understanding of the cosmos (or the 

universe) and how it evolves is growing as never before. 
That is due, in large measure, to the immense light-gath-
ering power and sensitivity of modern telescopes. Cur-
rent telescope technology makes it possible for astrono-
mers to observe objects that were completely invisible 
to us just a few years ago. For example, we can now see 
so far away and therefore so far into the past that we 
see the frst stars and the frst galaxies as they just began 
forming more than 13½ billion years ago. We could not 
see these objects even a decade ago, and likewise, it took 
just 21 years for astronomers to discover 1000 planets 
orbiting nearby stars, a feat that would have been im-
possible 30 years ago. 

Telescopes are not the only means by which we are 
deepening our understanding of what lies beyond Earth’s 
atmosphere. We have also begun the process of physically 
exploring our neighborhood in space. In just the past half 
century, humans have walked on the Moon; space probes 
have roamed over parts of Mars, dug into its rocks and soil, 
and blasted its surface with laser beams; and other probes 
have crashed into one comet and brought back debris from 
another one, landed on an asteroid and on murky Titan, 
discovered active volcanoes and barren ice felds on the 
moons of Jupiter, traveled through the shimmering rings of 
Saturn, and departed from the realm of the planets in our 
solar system, to mention just a few accomplishments. We 
are also witnessing the dawn of space tourism, with people 
buying trips to the  International Space  Station.

In the best locations, the night sky is truly breathtaking 
(Figure 1-1a). Even if you cannot see the thousands of stars 
visible in clear locations (Figure 1-1b), software such as 
Starry Night ™ can show them to you. The night sky can 
draw you out of yourself, inviting you to understand what 
is happening beyond Earth and inspiring you to think 
about our place in the universe. 

Until the past few centuries, the explanations people 
found for what they saw in the sky were based on beliefs 
that had to be accepted on faith—there was no way to 
test ideas of what stars are, or whether the Moon really 
has liquid water oceans (as was believed back then but 
is not true), or how the planets move, or why the Sun 
shines. Times have changed. We are fortunate to be living 
in an era when science has answers to many of the ques-
tions inspired by the universe.

Beautiful, intriguing, and practical, astronomy and its 
ongoing process of discovery have something for every-
one. This course and this book will help you better under-
stand the universe by sharing what we have learned and 
are still learning about many of these questions. They will 
also demonstrate the awesome power of the human mind 
to reach out, to observe, to explore, and to comprehend. 
One of the great lessons of modern astronomy is that by 
gaining, sharing, and passing on knowledge, we transcend 
the limitations of our bodies and the brevity of human life.

In this chapter you will discover
• how astronomers map the night sky to help them 

locate objects in it

• that Earth’s spin on its axis causes day and night

• how Earth’s orbit around the Sun combined with 
the tilt of Earth’s axis of rotation relative to its orbit 
create the seasons

• that the Moon’s orbit as seen from Earth creates the 
phases of the Moon and lunar and solar eclipses

• how the year is defned and how the calendar was 
developed

a

b

FIGURE 1-1 The Night Sky Without and With Light 
 Pollution (a) Sunlight is a curtain that hides virtually  everything 
behind it. As the Sun sets, places with little smog or light pol-
lution treat viewers to beautiful panoramas of stars that can 
inspire the artist or scientist in many of us. This photograph 
shows the night sky in Goodwood, Ontario, Canada, during 
a power outage. (b) This photograph shows the same sky with 
normal city lighting. (© Todd Carlson/ SkyNews Magazine)
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SCALES OF tHE UNIVErSE
In learning a new feld it is often useful to see the “big 
picture” before exploring the details. For this reason, 
we begin by surveying the major types of objects in the 
universe, along with their ranges of size and the scale of 
distances between them.

1-1 Astronomical distances are, well, 
astronomical
One of the thrills and challenges of studying astrono-
my is becoming familiar and comfortable with the vast 
range of sizes that occur in it. In our everyday lives we 
typically deal with distances ranging from millimeters 
to thousands of kilometers. (The metric or International 
System (SI) of units is standard in science and will be 
used throughout this book; however, we will often pro-

vide the equivalent in U.S. customary units. Appendix 
E-10 lists conversion factors between these two sets of 
units.) 

A hundredth of a meter or a thousand kilometers 
are numbers that are easy to visualize and write. In as-
tronomy, we deal with particles as small as a  millionth 
of a billionth of a meter and systems of stars as large 
as a thousand billion billion kilometers across. Similarly, 
the speeds of some things, like light, are so large as to be 
cumbersome if you have to write them out in words each 
time. Scientifc notation  (Appendix A) makes compari-
sons easy, telling us how many factors of 10 in size, mass, 
brightness, distance, and other parameters one object is 
compared to another.

The size of the universe that we can observe and the 
range of sizes of the objects in it are truly staggering. 
Figure 1-2 summarizes the array of  sizes from atomic 
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An

imAtion 1.1 FIGURE 1-2 The Scales of the Universe This curve 
gives the sizes of objects in meters, ranging from sub-

atomic particles at the bottom to the entire observable uni-
verse at the top. Every 0.5 cm up along the arc represents a 
factor of 10 larger. (Top to bottom: r.  Williams and the Hubble 

deep Field Team [STScI] and NASA; ESA/Hubble & NASA; NASA/ 
JPL-Caltech/University of Wisconsin; NASA/SdO/HMI; NASA/NOAA/
GSFC/Suomi NPP/VIIrS/Norman Kuring; Jose Luis Pelaez/Getty Im-
ages; Lee d. Simon/Science Source; Courtesy of Florian Banhart/ 
University of Mainz)
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e Interstellar gas and dust f Galaxies

c Rocky and icy debris

g Black holes h Clusters of galaxies i Intergalactic gas

a Planets b Rocky and metallic debris

d Stars

Jupiter Asteroid Eros

Comet West

Southern
Pinwheel
Galaxy

Part of the
Eagle Nebula

Sun

Black hole

In-spiraling
gas and dust

Hercules
cluster of
galaxies

Galaxies

Intergalactic gas

FIGURE 1-3 Inventory of the Universe Pictured here are ex-
amples of the major categories of objects that have been found 
throughout the universe. You will discover more about each 
type in the chapters that follow. (a: NASA/Hubblesite; b: NASA;  

c: Peter Stättmayer/ESO; d: Big Bear Solar Observatory/New Jersey 
Institute of Technology; e: NASA/Jeff Hester and Paul Scowen; f: Aus-
tralian Astronomical Observatory/david Malin Images; g: NASA; h: 
NOAO/AUrA/NSF; i: Image courtesy of NrAO/AUI/NSF)

particles up to the diameter of the entire universe vis-
ible to us. Unlike linear intervals measured on a ruler, 
moving up 0.5 × 10−2 m (0.5 cm) along the arc of this 
fgure brings you to objects 10 times larger. Because of 
this, going from the size of a proton (roughly 10−15 m) 
up to the size of an atom (roughly 10−10 m) takes about 
the same space along the arc as going from the distance 
between Earth and the Sun to the distance between 
Earth and the nearby stars. 

This wide range of sizes underscores the fact that 
astronomy synthesizes or brings together informa-
tion from many other felds of science. While we can-
not go to the ends of the universe to examine all its 
components, the light from the universe coming to us, 
combined with our understanding of the laws of na-
ture, provides invaluable insights into how the vari-
ous components of the cosmos work and how they 
interact with each other. We will discuss some of the 
underlying principles of science as we need them. 

What, then, have astronomers seen of the universe? 
Figure 1-3 presents examples of the types of objects we 
will explore in this text. An increasing number of planets 
like Jupiter, rich in hydrogen and helium (Figure 1-3a), as 
well as rocky planets similar to Earth, are being discov-
ered orbiting other stars. Much smaller pieces of space 
debris—some of rock and metal called asteroids or me-
teoroids  (Figure 1-3b), and others of rock and ice called 
comets  (Figure 1-3c)—orbit the Sun (Figure 1-3d) and 
other stars. Vast stores of interstellar gas and dust are 
found in many galaxies; these “clouds” are often the in-
cubators of new generations of stars (Figure 1-3e). Stars 
by the millions, billions, or even trillions are held togeth-
er in galaxies by the force of gravity (Figure 1-3f). Most 
galaxies contain black holes, objects with such strong 
gravitational attraction that nothing can escape from 
them (Figure 1-3g). Groups of galaxies, called clusters, 
are held together by gravity (Figure 1-3h), and clusters 
of galaxies are grouped together in superclusters. Huge 
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quantities of intergalactic gas are often found between 
galaxies (Figure 1-3i). 

Every object in astronomy is constantly changing—
each has an origin, an active period you might consider 
as its “life,” and each will have an end. In addition to 
examining the objects that fll the universe, we will also 
study the processes that cause them to change. After all 
is said and done, you will discover that all the matter 
and energy that astronomers have detected are but the 
tip of the cosmic iceberg—there is much more in the uni-
verse, but astronomers do not yet know its nature.

PAttErNS OF StArS
When you gaze at the sky on a clear night where the air 
is free of pollution and there is not too much light from 
cities or other sources, there seem to be millions of stars 
twinkling overhead. In reality, the unaided human eye can 
detect only about 6000 stars over the entire sky. At any 
one time, you can see roughly 3000 stars in dark skies, 
because only half of the stars are above the horizon—the 
boundary between Earth and the sky. In very smoggy or 
light-polluted cities, you may see only a tenth of that num-
ber or less (see  Figure 1-1). 

(Hi and Lois © 1992 King Features Syndicate)

FIGURE 1-4 The Constellation Orion (a) The pattern of stars 
(asterism) called Orion is prominent in the winter sky. From the 
northern hemisphere, it is easily seen high above the southern 
horizon from december through March. You can see in this 
photograph that the various stars have different colors—some-
thing to watch for when you observe the night sky. (b) Techni-
cally, constellations are entire regions of the sky. The constella-

ba

GEMINI
TAURUS

ERIDANUS
MONOCEROS

LEPUS

CANIS
MAJOR

Rigel

Crab 
Nebula

“Great
Nebula”

Aldebaran

Bellatrix
Betelgeuse

ORION

tion called Orion and parts of other nearby constellations are 
depicted in this photograph. All the stars and other celestial 
objects, like galaxies, inside the boundary of Orion are mem-
bers of that constellation. The entire sky is covered by a quilt-
like pattern of 88 constellations of differing sizes and shapes. 
(© 2004 Jerry Lodriguss/Astropix.com)

In any event, you probably have noticed patterns 
of bright stars, each technically called an asterism, and 
you are familiar with some common names for some of 
them, such as the ladle-shaped Big Dipper and broad-
shouldered Orion. These recognizable patterns of stars 
(Figure 1-4a) are informally called constellations in 
everyday  conversation.  Technically, however, constel-
lations are entire regions of the sky and everything in 
them. In what follows, we will often use the word “con-
stellation” to mean either the asterisms or the regions 
of the sky. Be careful to consider which version of the 
word is in use. 
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